make_monitoring_ui_artifacts module¶
- make_monitoring_ui_artifacts.load_data_from_db() tuple[DataFrame, DataFrame] ¶
Load dataset with meaningful features, and same dataset but turned into dummies (dataset consists of only categorical features)
- make_monitoring_ui_artifacts.load_model_from_mlflow(model_mlflow_runid: str = None) object ¶
Load a model to be used If a run id is not provided, the env run id will be used
- make_monitoring_ui_artifacts.make_evidently_html_dashboards(meaningful_reference_data: DataFrame, meaningful_current_data: DataFrame) None ¶
Create HTML evidently dashboards
- make_monitoring_ui_artifacts.make_monitoring_ui_artifacts()¶
Update monitoring UI artifacts used by streamlit Default (from env) model run id is used, the user can input a new mlflow run id to use a new model
- make_monitoring_ui_artifacts.make_shap_graphs(model: object, X: DataFrame) None ¶
Make SHAP graphs based on loaded model and data used for model training
- make_monitoring_ui_artifacts.prep_data_for_shap_graphs(model_data_w_dummy: DataFrame) DataFrame ¶
Prepare data for the next task in the flow
- make_monitoring_ui_artifacts.prepare_data_for_evidently(model_data_w_dummy: DataFrame, meaningful_features_data: DataFrame) tuple[DataFrame, DataFrame] ¶
I only have 1 set of data, so I split it to create reference/current data